A terrane wreck? Or just a slip up? A paleomagnetic study of terrane accretion in the western Cordillera

Date
2014
Journal Title
Journal ISSN
Volume Title
Publisher
Producer
Director
Performer
Choreographer
Costume Designer
Music
Videographer
Lighting Designer
Set Designer
Crew Member
Funder
Rehearsal Director
Concert Coordinator
Moderator
Panelist
Alternative Title
Department
Bryn Mawr College. Department of Geology
Type
Thesis
Original Format
Running Time
File Format
Place of Publication
Date Span
Copyright Date
Award
Language
eng
Note
Table of Contents
Terms of Use
Rights Holder
Access Restrictions
Open Access
Tripod URL
Identifier
Abstract
The North American Cordillera is composed of amalgamated allochthanous terranes that originated far southwest of their present-day location in the Panthalassic (paleo-Pacific) and Tethys oceans. Despite over thirty years of debate, the distance and mechanism of terrane transport continues to elude the geologic community. This is partially due to the fact that traditional geology and paleomagnetic studies yield contradictory results. Three main models have been proposed to reconcile the traditional geology and paleomagnetic data: 1) the Baja-British Columbia hypothesis, 2) the moderate tilt hypothesis, and 3) the westward subduction hypothesis. This paper presents case studies of the Triassic Nicola Group and the Early Cretaceous Spences Bridge Group – both exposed today in the Princeton, British Columbia region of Canada. Demagnetization results along with field tests indicate that the Nicola Group was remagnetized within the last 200 Ma and thus cannot be interpreted within the context of the terrane accretion debate. The Spences Bridge group’s characteristic remanent magnetization (ChRM) suggests either a pre-tilting or syn-tilting affiliation. If the ChRM is pre-tilting, it suggests about 3,400 km of transport northwards, whereas, if the ChRM is interpreted as syn-tilting, it indicates about 1,900 km of northward transport.
Description
Citation